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Optimal and robust control for the three-dimensional algebraically growing instability
of a Blasius boundary layer is studied in the nonlinear regime. First, adjoint-based
optimization is used to determine an optimal control in the form of a spanwise-uniform
wall suction that attenuates the transient growth of a given initial disturbance, chosen
to be the optimal perturbation of the uncontrolled flow. Secondly, a robust control
is sought and computed simultaneously with the most disrupting initial perturbation
for the controlled flow itself. Results for both optimal and robust control show that
the optimal suction velocity peaks near the leading edge. In the robust-control case,
however, the peak value is smaller, located farther downstream from the leading edge,
and the suction profile is much less dependent on the control energy than in the
optimal-control case.

1. Introduction
1.1. The formation of streaks

Transient growth of disturbances is a mechanism which appears to reconcile the
seeming contrast between classical stability theory (based on the growth or decay of
a single-mode perturbation) and experimental observations of the initial phases of
transition in boundary layers, channels and pipes (cf. Schmid & Henningson 2001).

In the case of the Blasius boundary layer, it is by now accepted that more than
one route to transition is possible: when free-stream disturbances are very small,
transition is conceivably preceded by the exponential amplification of Tollmien–
Schlichting waves. On the other hand, when somewhat larger perturbations are
present, the near-wall region becomes populated by elongated streaks of low and
high streamwise velocity. Arguably the most detailed recent experiments supporting
this description have been conducted in Stockholm (cf. for example, Boiko et al. 1994;
Westin et al. 1994; Matsubara & Alfredsson 2001) and Pasadena (cf. Kendall 1985,
1998).
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Early theory was able to explain the presence of the streaks on the basis of a
physical argument, named the lift-up effect by Landahl (1980). Today, most attention
has shifted to the fact that the linearized operator governing the amplification of
infinitesimal disturbances is highly non-normal (Trefethen et al. 1993) and, as a
consequence, significant transient amplification of non-modal disturbances can occur
even in subcritical flow configurations. The study of solutions of the linearized stability
equations has demonstrated that transient growth produces streaks (cf. the spatial
theory by Luchini 1997, 2000, and Andersson, Berggren & Henningson 1998, 1999). In
the course of recent developments, Zuccher, Bottaro & Luchini (2004) have identified
the optimal initial perturbations that provide the largest amplification of the streaks
in the nonlinear regime. It turns out that energy growth is significantly dependent on
the spanwise scale of the streaks, and that, in the presence of large initial disturbance
amplitudes, the most amplified streaks are more loosely spaced than in the linearized
case.

1.2. The control of streaks

A free-stream perturbation impinging on the leading edge of a flat plate can cause
transition if it is of the correct shape and amplitude. Although the steps that follow
the growth of the streaks and that lead to transition are still the subject of debate
and research (cf. Wu & Choudhari 2001), it is reasonable to argue that transition can
be spatially delayed if the amplification of the streaks is hampered. In this paper, the
wall boundary condition is employed to control the growth of the streaks. The term
‘optimal control’ is here used to denote the best way of controlling a certain initial
perturbation. In the context of boundary-layer instabilities, the perturbation kinetic
energy is usually taken as an indicator of the level of disturbances, so that the control
can be optimized by requiring, for instance, the energy at the end of the plate (or the
integral of the energy over the streamwise length) to be the lowest. One of the most
classical and practically convenient means of affecting the flow, experimented upon
since Prandtl’s time, is applying suction at the wall (see Floryan & Saric 1979; Myose
& Blackwelder 1991, 1995).

Previous work on transition delay has mainly considered suction/blowing
distributions of the same wavenumber and frequency as the disturbance wave. This
is, in fact, a necessary choice if the analysis is to be contained within the limits of
a linear model. Bewley & Liu (1998) applied modern control theory to determine,
in a linear framework and at a fixed Reynolds number, the vertical wall velocity
oscillation capable of optimally counteracting waves and non-modal disturbances
in plane channel flows. They also considered a form of control known as ‘robust
control’, upon which we will dwell later. Cathalifaud & Luchini (2000) optimized
the algebraic growth of streaks in boundary layers by blowing and suction at
the wall. In their work, the boundary-layer equations linearized about the Blasius
base flow are solved using the linear optimal perturbation as initial condition.
Suction and blowing are applied at the wall, in the form of a given v-component
of the perturbation velocity, and adjoint-based optimization is then employed to
determine the most effective oscillating-suction distribution. Corbett & Bottaro (2001)
studied the control of parallel temporal optimal perturbations under a pressure
gradient via blowing/suction at the wall, using a cost function which combined a
weighted sum of the terminal and average disturbance energy with the control effort;
their base flow was a boundary layer described by Falkner–Skan–Cooke similarity
solutions. All of these studies embody a concept known as ‘cancellation control’: the
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spanwise-oscillating flow induced by the wall suction and blowing is optimized so as
to cancel the perturbation linearly.

On the other hand, we can also resort to an alteration of the mean flow, of the
type classically proposed for transition control (see Schlichting 1979, chap. 14). This
kind of control is fundamentally different because it does not require any feedback;
whereas the oscillating blowing and suction distribution of Cathalifaud & Luchini
(2000) must be in phase with the external disturbance to be effective, a mean-flow
modification acts independently of phase. On the other hand, its action mechanism is
nonlinear, and only a nonlinear model can achieve its optimization. Recently, under
the impulse of a European project dedicated to applying laminar-flow technology to
transport aircrafts, the optimization of suction systems meant to delay transition over
fins and nacelles of a large aircraft has been undertaken. Theoretical results in this
framework have been reported by Pralits, Hanifi & Henningson (2002) and Airiau
et al. (2003). Both groups, using an adjoint-based optimization of the solution of
parabolized stability equations, found the optimal steady suction for the control of
infinitesimal disturbances in incompressible flows.

The simplest approach to identifying the optimal control of a given flow is to
impose the worst initial condition and then optimize the control. This procedure
is indeed generally known by the name of ‘optimal control’. However, on second
thoughts, this does not really represent the most effective control, because the presence
of the control makes the worst initial condition different. When the worst initial
perturbation is computed in the presence of the control itself, which implies that both
must be simultaneously optimized, ‘robust control’ is obtained, a rigorous analysis
of which has been presented by Bewley, Temam & Ziane (2000) in the context of
the Navier–Stokes system of equations. They established conditions on the initial
data, the parameters in the cost functional and the regularity required of the flow
field such that existence and uniqueness of the robust control can be proved. They
considered both linear and nonlinear cases and proposed numerical algorithms based
on the repeated computation of an adjoint field, but did not present any quantitative
results.

1.3. Goal of the present work

The present study aims at providing the optimal and robust mean wall-suction dis-
tributions that most efficiently attenuate the growth of streaks through a modification
of the mean flow. Such a result can only be obtained in the context of nonlinear
equations. In addition, a nonlinear study will automatically take into account the
results of Zuccher et al. (2004), that is, at large initial energy, a saturation state can
be reached and the disturbance energy remains more or less constant with streamwise
position in the final part of the plate, and also of any new mode interactions that
might possibly be triggered by the control itself, thus spoiling the beneficial effects
aimed for.

For this purpose, the velocity field is decomposed in a Fourier series along the
spanwise direction, so that an arbitrary shape produced by nonlinear effects can be
accounted for.

The worst initial condition (optimal perturbation) computed without control in
Zuccher et al. (2004) will be optimally controlled using a spanwise-uniform wall
suction velocity, obtaining the strongest reduction in disturbance energy. Robust
optimal control will then be applied, by simultaneously computing the worst initial
condition and the corresponding best control at the wall.
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2. Problem formulation
The behaviour of steady streaky structures in the laminar flow past a flat plate

can be studied by employing the three-dimensional incompressible boundary-layer
equations, written below in conservative form:

ux + vy + wz =0,

(uu)x + (uv)y + (uw)z − uyy − uzz =0,

(uv)x + (vv)y + (vw)z + py − vyy − vzz =0,

(uw)x + (vw)y + (ww)z + pz − wyy − wzz = 0.


 (2.1)

The scaling of variables is the following: the streamwise coordinate x is normalized
with the total length of the plate L, the wall-normal coordinate y and the spanwise
coordinate z are made dimensionless with δ =Re−1/2L =(νL/U∞)1/2, the streamwise
velocity u is made dimensionless with respect to the outer velocity U∞, whereas v and
w (respectively wall-normal and spanwise components) are made dimensionless with
respect to Re−1/2U∞; Re is the Reynolds number defined as Re = U∞L/ν; pressure is
normalized with Re−1ρU 2

∞, ρ being the density. Notice that, because of the scaling,
Re does not appear in the equations, i.e. the present approach is Reynolds-number
independent (Luchini 2000). More specifically, all results presented in the following
sections are valid for any (large enough) Reynolds number, the only difference
being in the scaling of the relevant dimensionless quantities, and in particular of the
amplification which is always proportional to the Reynolds number itself.

System (2.1) requires six boundary conditions, three at the wall, y = 0, and three
for y → ∞:

u = 0 at y = 0,

v = vw at y = 0,

w = 0 at y = 0,

u = 1 for y → ∞,

w = 0 for y → ∞,

p = 0 for y → ∞,


 (2.2)

where vw (x, z) is the wall-normal velocity component due to blowing or suction at the
wall (zero if no control is applied). System (2.1) is parabolic in x and therefore initial
conditions are required. However, only two initial conditions are allowed, as discussed
in Luchini & Bottaro (1998). When the streamwise component u is uniformly equal
to 1 upstream of the leading edge, the constraint relating the initial conditions for v

and w to each other simply reduces to the continuity equation. The initial conditions
therefore are

u(0, y, z) = 1,

v(0, y, z) = v0(y, z),

}
(2.3)

where v0(y, z) represents the initial free-stream perturbation and w(0, y, z) = w0(y, z)
can be retrieved from the equation

∂v0(y, z)

∂y
+

∂w0(y, z)

∂z
= 0.

2.1. Choice of the objective function and initial conditions

In previous work concerning the linear algebraic instability and its optimal control,
the perturbation kinetic energy was always taken as a measure of the level of
perturbations, even if this is not necessarily the only physical quantity signalling the
beginning of transition. Here, we adopt as objective function

J = α1Eout + α2Emean , (2.4)
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and work on the assumption that the initial energy Ein is fixed at the value E0.
Here, Eout is the disturbance energy at the end of the plate and Emean the integral
of the energy over the whole length. The coefficients α1 and α2 are used to weight
the relative importance of the two energies in the cost function. A cost based on the
mean energy seems to be more effective when dealing with optimal control problems.
As shown by Cathalifaud & Luchini (2000), optimal control based on minimizing the
final energy Eout alone can produce a very large transient energy amplification before
the final streamwise position, with possible undesired consequences on boundary-layer
transition. In most of the cases considered here, α1 = 0 and α2 = 1 will be assumed.

We remark that the gain G, because of the chosen scaling, takes the general form

G =
α1Eout + α2Emean

Ein

= Re

α1Eu|x=1 + α2

∫ 1

0

Eu dx[
1

2Z

∫ Z

−Z

∫ ∞

0

(|v0|2 + |w0|2) dy dz

]
x=0

(2.5)

with

Eu(x) =
1

2Z

∫ Z

−Z

∫ ∞

0

|u′|2 dy dz.

The disturbance u′, which is the deviation of the streamwise velocity component
from its mean, is set to zero at x = 0 because, owing to its different scaling with
respect to the v and w components, this choice guarantees the maximal gain in
the large-Reynolds-number limit. As a consequence, Re acts as a multiplicative
parameter for the gain, and all the numbers that will be read in figure 2 and the
following ones must eventually be multiplied by the actual Reynolds number of the
flow (typically of the order of 106). The local energy of the streaks Eu(x) contains
only the streamwise velocity component because retaining the term Re−1(|v′|2 + |w′|2)
would be inconsistent with the inner–outer expansion from which the boundary-layer
approximation is derived (Luchini 2000).

2.2. Constrained optimization and linear adjoint problem

Once the objective function to be minimized has been chosen, the next step is to
devise an optimization technique able to determine the boundary condition at the
wall that renders the objective function minimal for a given initial condition v0(y, z)
and for a given cost of the control, which we assume to be measured by the control
energy

Ew =

[∫ 1

0

|vw|2 dx

]
y=0

. (2.6)

There are classically two ways to do this: one is to incorporate the cost of the
control in the total cost function with a suitable penalty factor taking account of the
different physical meaning of the perturbation energy (aptitude to induce transition)
and control energy (external work necessary to produce it); the second is to impose
a given value Ew0 of the control energy as a constraint, in the form

Ew(vw) = Ew0 (2.7)

and to perform a constrained optimization.
Practically, in both cases a parametric study must be performed, because the

relative weight of perturbation and control energy may vary from case to case. In
a parametric study, the two approaches are completely equivalent, because at the
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point where control energy is the same they yield the same result. The second choice,
however, allows us to parameterize our curves with direct reference to the control
energy, and therefore to obtain an easier graphical representation of the results.

When robust control is considered, both the initial perturbation and the vertical
velocity at the wall are to be simultaneously optimized. In this case, the initial
condition v0(y, z) is an additional unknown that satisfies the constraint:

Ein(v0) =

[
1

2Z

∫ Z

−Z

∫ ∞

0

(|v0|2 + |w0|2) dy dz

]
x=0

= E0. (2.8)

Since, at x = 0, w0 is uniquely determined by v0, the initial perturbation energy is
written as a function of v0 only.

The optimization technique is conceptually just an extension of the method used in
Zuccher et al. (2004) to find optimal perturbations, although some additional care is
needed in the case of robust control because the target is a saddle point in parameter
space. We first introduce the functional

L = J +
1

2Z

∫ Z

−Z

∫ ∞

0

∫ 1

0

a[ux + vy + wz] dx dy dz

+
1

2Z

∫ Z

−Z

∫ ∞

0

∫ 1

0

b[(uu)x + (uv)y + (uw)z − uyy − uzz] dx dy dz

+
1

2Z

∫ Z

−Z

∫ ∞

0

∫ 1

0

c[(uv)x + (vv)y + (vw)z + py − vyy − vzz] dx dy dz

+
1

2Z

∫ Z

−Z

∫ ∞

0

∫ 1

0

d[(uw)x + (vw)y + (ww)z + pz − wyy − wzz] dx dy dz

+ λ0[Ein(v0) − E0] + λw[Ew(vw) − Ew0], (2.9)

where a(x, y, z), b(x, y, z), c(x, y, z), d(x, y, z), λ0 and λw are Lagrange multipliers, and
then impose that δL = 0 at a point of minimum or at a saddle point for J, i.e. that
the Fréchet derivative of L with respect to all dependent variables must vanish. In
so doing, it is easy to see that all direct equations are recovered, and that a set of
linear, adjoint equations appear; they read

cy + dz = 0, (2.10a)

ax + 2bxu + byv + bzw + czv + dxv + dxw + byy + bzz = α2u, (2.10b)

ay + byu + cxu + 2cyv + dyw + czw + cyy + czz = 0, (2.10c)

az + bzu + czv + dyv + dxu + 2dzw + dyy + dzz = 0. (2.10d)

This system is backward parabolic and therefore it needs initial conditions at x = 1,
as well as boundary conditions at the wall and in the free stream. All the necessary
conditions can be obtained in the process of integration by parts that has led to (2.10).
The boundary conditions are

b = 0 at y = 0,

c = 0 at y = 0,

d = 0 at y = 0,

b = 0 for y → ∞,

a + 2cv + cy = 0 for y → ∞,

d = 0 for y → ∞,


 (2.11)
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and the initial conditions read

a + 2ub + α1

DEout

Du
= 0 at x = 1,

c = d = 0 at x = 1,


 (2.12)

where the latter two are not independent because of (2.10a) and DEout/Du is the
Fréchet derivative of the final energy with respect to a variation in the streamwise
velocity component.

Finally, the optimality conditions at x = 0 and y = 0, which relate the direct to the
adjoint problem, reduce to

c −
∫

dy dz − λ0

DEin

Dv0

= 0 at x = 0,

a + cy − λw

DEw

Dvw

= 0 at y = 0.


 (2.13)

The direct and adjoint equations are discretized by a mixed spectral–finite difference
approach described and validated in Zuccher et al. (2004).

2.3. Iterative optimization

The iterative technique employed to drive δL to zero is summarized here. It corres-
ponds to the procedure outlined by Bewley et al. (2000).

1. An initial guess is chosen for the initial condition v0 at x = 0 and boundary
condition, vw at y = 0.

2. The parabolic direct problem (2.1) is numerically solved by marching forward
in space from x = 0 to x = 1.

3. At x = 1, the objective function J is evaluated and the initial condition for
a∗ = a + 2ub is obtained from the relationship

a∗ = −α1

DEout

Du
.

If the objective is the integral of the energy over the whole domain (i.e. if α1 = 0), the
condition is obviously a∗ = 0.

4. The adjoint problem (2.10) is numerically solved together with the initial
conditions (2.12) and boundary conditions (2.11), by marching backward in space
from x = 1 to x = 0.

5. Once the adjoint solution is known, the optimality conditions (2.13) are used
to obtain the next best guess of initial and boundary conditions, with a Lagrange
multiplier chosen to satisfy the relevant constraint, and the procedure can restart
from step 2. The loop stops whenever the difference in J between two consecutive
iterations becomes smaller than a prefixed threshold.

In the optimal perturbation or optimal control problem, only one of the
conditions (2.13) is updated, whereas in robust control, each condition is updated in
turn, performing a few iterations on each. In robust control, the optimal perturbation
is first computed for a fixed boundary condition. Steps 2 to 5 are carried out using
the updated initial condition and, if the gain is lower than that of the previous step,
the relaxation factor of the gradient algorithm is halved (this technique is described
in Zuccher et al. 2004). The step is repeated until a larger gain is found. After having
updated the initial condition for a fixed control, the cycle of steps from 2 to 5 is
repeated varying the control. The new control is also computed via a gradient iteration
of variable step size meant to satisfy the second of the optimality conditions (2.13).
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The relaxation parameter is halved and the procedure repeated whenever the gain at
iteration (i + 1) exceeds that obtained at iteration (i).

2.4. Optimal control and robust control

The search for the optimal control proceeds very similarly to the search for the
optimal perturbation, with the obvious change that the objective function is to be
minimized rather than maximized. In the more general case of robust control, on
the other hand, the required extremum is a saddle point corresponding to an initial
condition which maximizes the gain and a boundary condition at the wall which
minimizes the gain.

A fully general dependence of the initial optimal perturbation on the spanwise
coordinate z is assumed and the variables are expanded in a Fourier series in z, in the
domain −π/β � z � π/β , with β the spanwise wavenumber. The Fourier coefficients
characterizing the initial conditions are:

mode n= 0 mode n � 1

U0(0, y) = 1,
V0(0, y) = 0,

W0(0, y) = 0,

Un(0, y) = 0,
Vn(0, y) = V 0

n (y),
Wn(0, y) = W 0

n (y),




(2.14)

with V 0
n and W 0

n related to each other by the continuity equation.
The control, on the other hand, for the reasons expounded in § 1, is chosen to be

constant in the spanwise direction, so as to represent a uniform suction/blowing (it
will actually turn out to be suction) applied at the wall without any knowledge of the
amplitude or phase of the oncoming disturbances. Therefore, the boundary condition
at y = 0 is different from zero for the wall–normal component of mode zero only:

mode n= 0 mode n> 0

U0(x, 0) = 0,

V0(x, 0) = vw(x),
W0(x, 0) = 0,

Un(x, 0) = 0,

Vn(x, 0) = 0,

Wn(x, 0) = 0.




(2.15)

Functions Vn(0, y) and V0(x, 0) are, respectively, the optimal perturbation and the
optimal control to be determined.

3. Optimal control: parametric study
3.1. Different objective functions – linear case

Our first result concerns the different controls generated by the two objective functions
J =Eout and J =Emean . Results are shown in figure 1 for a very low initial energy,
E0 = 10−7, where the behaviour is still linear, and for a reasonably large control energy
Ew = 1. For each case, the optimal wavenumber computed by Zuccher et al. (2004)
has been chosen, i.e. β =0.45 for J = Eout and β = 0.547 for J = Emean . The initial
optimal perturbations for these tests are those obtained in the absence of control.
If the objective function is the final energy, nothing prevents the energy from being
larger at an intermediate x than at the final station. This actually happens, although
to a small degree here, as shown in figure 1(a). Therefore, the choice of the final
energy as the objective to be minimized, just as pointed out (for a different type of
control) by Cathalifaud & Luchini (2000), produces a non-monotonic increase of the
energy that is liable to lead to transition even before the end of the boundary-layer
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Figure 1. Optimal control: comparison between two different objective functions, linear
behaviour. E0 = 10−7, Ew = 1, β =0.45 for –––––––, J = Eout , β = 0.547 for - - -, J = Emean .
(a) Disturbance energy, normalized by E0, as a function of x. (b) Optimal suction at the wall
normalized with

√
Ew .

region considered. On the other hand, if the objective function is J = Emean , i.e. the
integral of the energy over the whole domain, the energy curve grows monotonically,
as shown in figure 1(a). At the cost of a slightly higher energy at x = 1, the energy
remains considerably lower than in the previous case over most of the domain.

From these somewhat empirical considerations (and on the basis of the analogous
results obtained in different contexts by Cathalifaud & Luchini 2000 and Corbett
& Bottaro 2001) it is clear that if the purpose is to control the energy growth, it is
preferable to minimize the mean energy rather than the energy at the final station.
For this reason, in the following tests, we consider the objective function J = Emean ,
and the corresponding gain is noted Gmean . The same strategy was adopted for the
control of infinitesimal disturbances by Pralits et al. (2002) and, for the case of streaks,
their computed control law (see their figure 4a) is quite similar to ours. Incidentally,
we note that the control distributions computed (figure 1b) are rather smooth, with
the possible exception of the leading and the trailing edge of the plate. The issue of
the smoothness of the control law (which bears also on the parabolic nature of the
governing equations) could be addressed by penalizing, for example, the gradient of
the control in the cost functional. This strategy has been adopted by Airiau et al.
(2003), but eventually it proved to be unnecessary. In fact, they also compared their
unpenalized results based on Prandtl’s equations to full Navier–Stokes calculations,
under the same control distributions, and concluded that shortly downstream of the
region where sharp peaks of the control velocity appeared, the two solutions coincided
and that, even in extreme cases, ‘the prediction from the parabolic model’ (in the
absence of penalization on ∂vw/∂x) ‘met the criteria of quality and accuracy required
by the present application.’

Different ways to analyse the data can be devised; we have chosen two initial
energy values, one close to the linear regime, E0 = 1, and one in the nonlinear regime,
E0 = 500, and for both of them we shall now change the other parameters, one at a
time.

3.2. Comparison for varying β and Ew

In figure 2, the mean gain is reported for E0 = 1 and E0 = 500 as a function of the
spanwise wavenumber β and for different values of the control energy at the wall Ew .
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Figure 2. Curve of the gain as a function of the spanwise wavenumber β for different values
of the control energy at the wall Ew . (a) Initial energy E0 = 1. (b) Initial energy E0 = 500.
–––––––, uncontrolled; – – –, Ew = 0.01; - - -, 0.1; ..... , 1.0; –·– , 5.0.

The solid lines in figures 2(a) and 2(b) represent the uncontrolled case. In the case of
low initial energy (figure 2a), it can be seen that a control energy Ew = 0.01 produces
a barely visible difference from the uncontrolled case (Ew = 0), as we should expect.
The maximum of the curve is still very close to β =0.547, the optimal β for Ew =0,
and the gain is just slightly lower, because of the control.

If the control energy at the wall is increased, Ew =0.1, the position of the maximum
shifts towards a higher wavenumber β , and the difference with the uncontrolled case
becomes more evident. The same trend also characterizes the case Ew =1.0 and
Ew = 5.0. For the highest control Ew = 5.0, the position of the maximum is located
at β =0.767, which is 40% larger than the optimal wavenumber without control. For
a higher initial energy, E0 = 500, the same general dependence on the control energy
Ew is found: for high control energies the optimal wavenumber monotonically shifts
towards higher values (cf. figure 2b). For the strongest control employed, Ew = 5.0,
the maximum of the curve is outside the range considered for these investigations,
whereas without control it was at β = 0.413. It is noticeable that, although nonlinear
interactions among all the Fourier modes are fully accounted for in the equations,
the damping effect of the control prevails smoothly up to very large control energies
without any undesired higher-harmonic excitation.

We shall now let the control energy at the wall vary for a fixed wavenumber β ,
equal to the value giving the maximum gain without control (§ 3.3), and then fix
the control energy Ew and observe the dependence on the wavenumber β (§ 3.4).
Lastly, we shall let the energy change while choosing the optimal wavenumber (the
wavenumber for which the curve Gmean(β) reaches its maximum) for each Ew (§ 3.5).

3.3. Comparison at fixed β

Here, β is fixed at a reference value equal to the optimal wavenumber of the
uncontrolled case, respectively β = 0.547 for E0 = 1 and β =0.413 for E0 = 500. In
figure 3, the behaviour of the energy Eu(x)/E0 is displayed for increasing control
energy Ew . Even a small control energy at the wall, Ew = 0.01, produces a visible
effect on the energy growth, and this is true for both initial energies E0 = 1 and
E0 = 500. With increasing control effort, the deviation from the uncontrolled case
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becomes more appreciable and for very high control energies, Ew = 5 and Ew = 10,
the reduction in Eu(x) is so strong that the corresponding curve is flattened against
the axis in figure 3. In these cases, Eu(x)/E0 is of the order of 10−5 for both low and
high initial energy E0.

In figure 4, the optimal suction profiles at the wall are presented for the same
cases. Each profile has been normalized with respect to

√
Ew in order to emphasize

the difference in shape arising from different control energies. The first remark is
that the control velocity at the wall, whose sign was not a priori determined, in
fact, turns out to be always negative, so that only suction is applied. For the lower
initial energy E0 = 1 (figure 4a), the increasing control effort Ew makes the profile
become more regular. The maximum suction, however, is always confined within
the first 20% of the total flat-plate length. On the contrary, for the higher initial
energy, E0 = 500, the profiles show an increased dependence of the maximum-suction
location on the control energy. Moreover, for E0 = 500, the suction velocity features
a smoother dependence on x than for E0 = 1. A slight difference is therefore found
between the linear and the nonlinear regimes, even though the optimal suction always
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β =0.547; (b) E0 = 500 and β = 0.413.

peaks next to the leading edge. The reason for this is very likely to be related to the
intuitive fact that in order to oppose the growth of a disturbance field, it is better to
act in the proximity of the most receptive region. Luchini & Bottaro (1998) actually
showed that the wall–receptivity coefficients of the system have their maximum at
x = 0.

In order to investigate how the mean flow is affected by the control, in figure 5,
we plot mode zero at the final station for E0 = 1 and E0 = 500. In agreement with
the optimal-perturbation analysis of Zuccher et al. (2004), for E0 = 1 in figure 5a,
Blasius and uncontrolled profiles practically coincide, showing that nonlinear effects
are irrelevant at this energy level. The control at the wall modifies the mean flow in
a way that resembles the asymptotic suction or an accelerated Falkner–Skan profile.
It should be remarked that, since the profile becomes fuller and its derivative at the
wall is increased, stabilization of the flow is obtained at the expense of an increased
drag, just as in classical boundary-layer suction. For high initial energy, E0 = 500,
the uncontrolled mode zero looks very different from Blasius’ because of the strong
distortions induced by nonlinear effects. When the control is applied (figure 5b), the
ensuing reduction in disturbance amplification carries along a reduction in nonlinear
interactions, and we can see that the stronger the control, the closer the profile is
to that corresponding to low initial energy. For example, at Ew = 10, the profiles for
E0 = 1 and E0 = 500 are almost the same.

In order to render more visually apparent how the optimal control attenuates
the disturbance induced by the optimal perturbation, figure 6 displays the crossflow
velocity (v, w) vectors and figure 7 the iso-streamwise-velocity (u) contours in the
(z, y)-plane at the outlet station x = 1, where the difference between the uncontrolled
and controlled cases is greatest, for large initial energy E0 = 500 and the corresponding
optimal β = 0.413. Without any control (Ew = 0, figure 6a), the optimal perturbation
induces streamwise vortices which drift away from the wall with increasing x. At
x = 1, the centres of these vortices are spaced by half a wavelength in the spanwise
direction, and located close to the boundary-layer edge (y ≈ 4). When the control is
applied (Ew =10, figure 6b), a reduction of both vortex size and intensity leads to a
flow field which is quite regular and strongly different from the uncontrolled case. A
completely uniform flow can be obtained at x = 1 for the same control energy when
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Figure 7. E0 = 500, β = 0.413. Streamwise velocity u isolines in the (z, y)-plane at x = 1.
(a) Uncontrolled. (b) Ew =10.

E0 = 1. The main physical effect of the control is therefore to flatten the vortices
against the wall.

The contours of the streamwise velocity u, reported in figure 7, confirm the above
interpretation. For an unperturbed Blasius profile, the contour plot would be made of
lines parallel to the z-axis; therefore the deviation from such a behaviour can visibly
suggest how strong the disturbance is. Without any control (figure 7a), the strong
lift-up induced by the optimal perturbation is responsible for the typical ‘mushroom’
shape observed (cf. also the nonlinear, sub-optimal streak computed by Andersson
et al. 2001). When the control is applied and the disturbance thus reduced, two effects
are visible on the plots. The first is that the contour lines become almost parallel
to the z-axis, the second is a reduction in both the horizontal and vertical extent
of the perturbed region. We can see that without control the contour lines are very
bulged and the region where this happens is located approximately between z = −4
and z = 4; with control (Ew = 10), the bulge decreases in amplitude and at the same
time in extent, becoming confined between z = −2 and z = 2.

The plots shown in figure 7 visually confirm that the main effect of wall suction is
to bring the disturbance closer to the wall. A perhaps less obvious conclusion is that
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at the same time it confines the perturbation horizontally to a smaller neighbourhood
of the lift-up point.

3.4. Comparison at fixed Ew

Another way to extract information from our data is to consider how the results
change as a function of the wavenumber β , for a fixed control energy Ew . In figure 8,
the streamwise evolution of the perturbation energy Eu(x)/E0 is reported for Ew = 1
and several wavenumbers (for each of the two initial energies E0 = 1 and E0 = 500).
Plots are normalized with the corresponding E0, in order to make it possible to
compare the results in terms of gain. One can easily see that there is no big difference
between low– and high–initial–energy profiles when looked at in this way. For both
initial energies, when the wavenumber is large the energy profile develops the typical
plateau already identified by Zuccher et al. (2004).

In figure 9, the optimal suction profiles at the wall are reported for Ew = 1. The
main significant difference between low and high E0 is in the position of the maximum
control, which is closer to the leading edge for E0 = 1. The general trend of a larger
suction applied near the leading edge is, however, confirmed. The maximum suction
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increases in absolute value and its position moves towards the leading edge as the
wavenumber increases.

3.5. Comparison at the optimal β

The last data comparison we present is obtained by changing the wavenumber so as
to keep it at the optimal value at the same time as we change the control energy.
This is useful to ascertain that a control optimized for a fixed wavenumber does not
worsen the instability at a different one. As far as the streamwise energy growth is
concerned, (figure 10a) obviously, when the control energy is higher, the whole curve
is driven down. On the other hand, the optimal suction profile at the wall shows, at
least for E0 = 1, a certain sensitivity to the control energy Ew . The overall trend is
quite similar to that observed when the profiles were compared at fixed wavenumber.
For this reason, only results regarding E0 = 1 are here reported at the optimal β .

3.6. Controlling on a finite window

In all cases considered in the previous sections, the control has always been applied
over the whole length of the wall from leading to trailing edge. However, in practical
applications to aircraft this solution might be unfeasible, because of the installation of
other devices at the leading or trailing edge. For this reason, it is worth checking what
happens if the control is applied only on a limited window, in the range x1 < x < x2

where x1 �= 0 and x2 �= 1. This can be obtained easily by penalizing the control
energy through a hat-shaped window function, or rather, in order to avoid creating a
discontinuity in the wall velocity profile, a smoothed-hat weight function k(x), namely

k(x) =




1 −
[
sin

(
π

x − x1

x2 − x1

− π

2

)]20

for x1 < x < x2,

0 for x < x1 and x > x2.

In figure 11, results are shown at fixed control energy Ew =1 for E0 = 1 and
β = 0.547. Different configurations are considered for comparison: without control
(solid line), with control from x = 0 to x =1, and with control over one or two windows.
The streamwise growth of the energy normalized with respect to E0 (figure 11a)
produces the expected results that the lowest integral of the energy over the whole
domain is achieved when the control is applied from x = 0 to x =1. The same holds
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true also for the value of the energy at the end of the plate. However, in the windowed
cases the overall reduction remains in the same general range.

From the optimal suction profile at the wall (figure 11b), it may also be observed
that the strongest control is always applied close to the leading edge, and that when
single or multiple windows are employed the profile looks very much like a windowed
portion of the original best control. The same trend is observed for large initial energy
(E0 = 500), both with and without control windows.

3.7. Skin friction

The most common goal of the laminar-flow-control technique is indirectly to reduce
skin friction by increasing the area of a wing surface over which flow is laminar at the
expense of the area where flow is turbulent. To reach this objective, we do not usually
include skin friction in the cost function, since the effect of a transition delay on skin
friction is not directly observable in a stability or optimal-perturbation calculation;
as a result of its reduced thickness, however, a controlled boundary layer is likely to
be characterized by an increased mean skin friction. It is therefore useful to quantify
this increase and verify that it remains small compared to the increase that would be
produced by a turbulent flow.

In figure 12, the derivative of U0 with respect to y at the wall is shown as a
measure of the skin friction and compared to the same quantity for a turbulent
boundary layer. For this purpose, a Reynolds number has to be chosen, and the
turbulent-boundary-layer friction coefficient at that Reynolds number rescaled to the
present non-dimensional variables. Since the transition Reynolds number may change
with experimental conditions, three (rather conservative) example values are included
in the figure. The turbulent friction coefficient has been obtained from Prandtl’s
low-Reynolds-number correlation for a flat-plate boundary layer (equation 21.12 of
Schlichting 1979), namely:

∂u∗

∂y∗

∣∣∣∣
y = 0

= 0.0296
U 2

∞
ν

(
xU∞

ν

)−1/5

,

where u∗ and y∗ are dimensional quantities and need to be normalized with respect
to U∞ and δ.



Nonlinear optimal and robust control of streaks 151

10

8

6

4

2

0
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

∂U0—–
∂y

10

8

6

4

2

0

Uncontrolled

Optimal control – Ew = 1.0

Re = 500 000

1 000 000

2 000 000

Blasius

x x

(a) (b)

Figure 12. ∂U0/∂y at the wall, in the uncontrolled, controlled (Ew = 1) and turbulent
boundary layer: (a) E0 = 1 and β =0.547; (b) E0 = 500 and β = 0.413.

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2
0 0.2 0.4 0.6 0.8 1.0

H

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2
0 0.2 0.4 0.6 0.8 1.0

(a) (b)

x x

Figure 13. Shape factor H , in the uncontrolled (——), controlled (Ew =1) (– – –) and
turbulent boundary layer (- - - -): (a) E0 = 1 and β = 0.547; (b) E0 = 500 and β = 0.413.

Two cases are reported, for a low initial energy E0 = 1 (figure 12a, at its optimal
β = 0.547) and high initial energy E0 = 500 (figure 12b, at its optimal β = 0.413).
In figure 12a, the initial perturbation is weak, and the uncontrolled velocity profile
is essentially Blasius’. The corresponding controlled profile shows a higher wall
derivative, and, in fact, qualitatively resembles an accelerating and more stable one.
However, when the controlled-flow skin friction is compared to the turbulent skin
friction computed for three possible Reynolds numbers (5 × 105, 106, 2 × 106), it
appears evident that the effect of control on skin friction is, under all circumstances,
well below the effect that would be produced by a transition to turbulence.

At high initial energy (figure 12b) the uncontrolled behaviour differs from Blasius’
because of the strong nonlinear interactions. In this case too, however, the increased
skin friction produced by optimal control is always smaller than any turbulent case
considered, confirming the advantage of this optimal-control strategy as an LFC
technique. To further illustrate the relative smallness of the mean-flow modification
induced by optimal control as opposed to the modification that can be induced by
turbulence, figure 13 displays the shape factor H for the uncontrolled, controlled and



152 S. Zuccher, P. Luchini and A. Bottaro

turbulent boundary layer. (As a reference for the turbulent case at near-transition
Reynolds number, the value H = 1.4 has been taken.)

At low initial energy (figure 13a) and when no control is applied, the shape factor of
the velocity profile does not differ from Blasius’ (H = 2.59). In the controlled case, H

decreases, as can be seen in the figure, to about 2.2, but always remains much higher
than 1.4. At high initial energy (figure 13b), the uncontrolled shape factor decreases
monotonically with x down to less than 1.7. The effect of the control, however, is to
restore a higher shape factor, by counteracting in fact the effect of the very strong
initial perturbation, leading to values larger than about 1.8. In all cases, the turbulent
value of 1.4 is not attained.

4. Robust control: parametric study
In the previous section, the best velocity distribution at the wall was computed so as

to minimize the algebraic growth of given initial conditions, chosen to be the optimal
perturbations for the uncontrolled flow. However, that calculation did not account for
the fact that the optimal perturbations, when the control is on, are possibly different
from those that were effective when the control was off. A new question can therefore
be asked: what is the initial condition to apply at x =0 in order to generate the
maximum energy growth when a suction velocity is applied at the wall, and what
is the best control to apply at the wall in order to damp that initial disturbance?
This approach, called ‘robust control’, furnishes both the optimal perturbation and
the optimal control at the same time while accounting for each other.

4.1. Comparison for varying β and Ew

In figure 14, the gain is reported as a function of the wavenumber for E0 = 1. The solid
line represents the optimal-perturbation result, that is to say without any control, the
small-dot curves refer to the optimal-control results presented in the previous section
and all the other curves are robust control results for different values of Ew . A first
remark is that, exactly as in the case of optimal control, an increase in the control
energy makes the maximum of the curves shift towards higher wavenumbers, and this
shift becomes more pronounced at high Ew . The overall gain curve representing the
robust control at each Ew is higher than the corresponding optimal-control curve, as
it must be, and the difference increases with Ew . For instance, the curves at Ew = 5
feature a gain which in the optimal case is almost half of the corresponding robust
one. Clearly, this implies a difference in both optimal control profile at the wall and
optimal initial perturbation, when optimal and robust cases are compared.

It should be remarked that the re-increase of the gain at low β observable in
some of the curves of figure 14 is a ghost image produced by an aliasing effect,
similar to that illustrated in Zuccher et al. (2004); namely, the algorithm converges
on an optimal solution in which the second harmonic becomes the fundamental,
reproducing exactly the same gain and the same physical solution as found in the
plot at double the wavenumber.

Energy-growth and suction-profile results will now be presented, first at constant
wavenumber and increasing control energy (§ 4.2), then at fixed control energy Ew

and varying wavenumber β (§ 4.3), and finally at the optimal wavenumber (§ 4.4).

4.2. Comparison at fixed β

Just as for the optimal control, comparisons at fixed β are performed at the
wavenumber for which the curve of the gain reaches its maximum in the uncontrolled
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Figure 15. Comparison at constant wavenumber β = 0.547 for increasing control energy Ew

at E0 = 1: (a) perturbation energy Eu(x)/E0; (b) optimal perturbation v0(y, z)/
√

E0 in the
plane z = 0.

case. The streamwise energy growth at β =0.547 is reported in figure 15 for E0 = 1.
The solid line denotes the uncontrolled case; the optimal-control results are also
reported for comparison. The mean gain for robust control must obviously be larger
than for the optimal case. Nonetheless, the energy curves (figure 15a) of robust
control are not everywhere above those corresponding to optimal control. As we
would expect, hardly any difference is seen for the lowest control energy Ew = 0.01.

In figure 15(b), the optimal perturbation v0(y, z)/
√

E0 in the plane z =0 is reported
for the same cases as in figure 15(a). The solid line corresponds to the uncontrolled



154 S. Zuccher, P. Luchini and A. Bottaro

0

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

–1.4

–1.6
0.2 0.4 0.6 0.8 1.0

0

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

–1.4

–1.6
0.2 0.4 0.6 0.8 1.0

V
0/

√E
w

Ew  = 0.01

0.10

1.00

5.00

x x

(a) (b)

Figure 16. Comparison at constant wavenumber β = 0.547 for increasing control energy Ew .
E0 = 1, optimal suction profile at the wall V0(x, 0)/

√
Ew: (a) optimal control; (b) robust control.

6
(×10–4)

5

4

3

2

1

0 0.2 0.4 0.6 0.8 1

E
u(

x)
/E

0

β = 0.4

0.5

0.6

0.7

0.8

x y

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 1 2 3 4 5 6 7 8

v(
0,

 y
, 0

)/
√E

0

(a) (b)

Figure 17. Comparison at fixed control energy Ew = 1 for increasing wavenumber β , E0 = 1:
(a) perturbation energy Eu(x)/E0; (b) optimal perturbation v0(y, z)/
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case, and it can be observed that the optimal-perturbation’s maximum gradually shifts
outwards with increasing control energy.

In figure 16, the optimal suction profiles are reported for the optimal- and robust-
control cases. Figure 16(a) reproduces some of the curves of figure 4(a) for comparison
purposes. For control-energy values Ew > 0.01, the difference between optimal and
robust control becomes visible. It can be observed that the modulus of the control
velocity in the robust-control case is always lower than the corresponding optimal-
control case, the location where the largest suction needs to be applied is always
closer to the leading edge in the optimal-control calculation, and the optimal suction
resulting from robust-control computations is more uniform in x.

4.3. Comparison at fixed Ew

Here, the control energy is fixed at Ew =1, and the dependence of the results
on the wavenumber β is analysed. In figure 17(a), the streamwise growth of the
disturbance energy is reported for E0 = 1. Note that the large-β plateau observed in the
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optimal-perturbation results discussed in Zuccher et al. (2004), and still present in the
optimal-control case (figure 8a), is no longer there. On the contrary, the energy profile
grows monotonically with x.

Optimal initial perturbations are displayed in figure 17(b). The position of the
maximum of the wall-normal velocity moves towards lower values of y when the
wavenumber increases, and the shape of the profile changes smoothly with varying
β . For low wavenumbers, V1(0, y) goes to zero very slowly for y → ∞; on the other
hand, for high wavenumbers, the optimal perturbation goes to zero more rapidly as
y → ∞. The same features were observed in the absence of control (see Zuccher et al.
2004).

It should also be noticed that in figure 17 the flow field obtained for β = 0.4 is a
ghost image of β =0.8 with the second harmonic n= 2 taking the place of n= 1.

In figure 18, optimal wall-suction profiles are plotted for both optimal and robust
control. Incidentally, figure 18(b) shows again the same result at β = 0.4 and β =0.8.
A remark is that the robust-control results are less dependent on the wavenumber
than the optimal ones. This can be quantified by looking at the variation of the
suction peak and its location. In the robust-control case, both parameters are within
a smaller range and, moreover, the maximum absolute value of the suction velocity
is always lower than in the optimal-control case. This general behaviour gives some
confidence that the suction profile determined by the robust calculation could be
effective in a range of wavenumbers and control energies and not just for the values
imposed when it was computed.

4.4. Comparison at optimal β

The last comparison is performed while choosing for each control energy the
corresponding wavenumber that maximizes the gain. The streamwise evolution of
the energy Eu(x)/E0 thus obtained is shown in figure 19(a) for optimal and robust
control.

The difference between the two control strategies smoothly increases with Ew

without any unexpected change in behaviour up to relatively large values of the
control energy (cf. figure 15a). The variation in the optimal initial perturbation
calculated in the robust-control framework is reported in figure 19b. With increasing
Ew , the position of the maximum moves farther from the wall and the value of the
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maximum increases at the same time. However, contrary to what happens when the
wavenumber is not optimized, all the profiles tend to zero in the same way as y → ∞.

In figure 20, the optimal suction profile V0(x, 0)/
√

Ew is reported for different
values of the control energy, at the optimal wavenumber, comparing optimal- and
robust-control results. The wall suction resulting from robust control (figure 20b)
turns out to be less sensitive to Ew than the one from optimal control; it is also more
regular, with smaller peak values and a maximum located farther downstream than
in the optimal-control case.

5. A further remark on the differences between optimal and robust control
In order to synthesize the differences between optimal and robust strategies, in

table 1 the optimal wavenumber βopt and corresponding gain G are reported for each
control energy Ew in the two cases.
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Robust control Optimal control Robust control Optimal control
Ew βopt βopt G/Re G/Re

0.1 0.585 0.588 6.918 × 10−4 6.801 × 10−4

1.0 0.655 0.660 2.749 × 10−4 2.370 × 10−4

5.0 0.732 0.767 5.062 × 10−5 2.745 × 10−5

Table 1. Values of optimal wavenumber β and gain G for optimal and robust control
as a function of the control energy Ew .

Case Initial condition at x = 1 Boundary condition at y = 0 G/Re

OO Optimal perturbation Optimal control 2.74 × 10−5

OR Optimal perturbation Robust control 3.67 × 10−5

RR Robust perturbation Robust control 5.02 × 10−5

RO Robust perturbation Optimal control 6.38 × 10−5

Table 2. Values of the mean gain G for different initial perturbations and suction velocities
at the wall. E0 = 1, Ew = 5 and β = 0.8.

As observed from the preceding figures, the robust-control suction profile is usually
more uniform in x (see figure 20), is quite insensitive to variations of Ew or β , and
presents a lower peak at a location which is farther downstream. This results in
a sensible difference in the optimal gain G, as reported in table 1 at Ew =1. The
optimal wavenumber βopt , on the other hand, does not change much. For the highest
control energy Ew = 5, for instance, even if the optimal wavenumber decreases only by
5%, the difference in the optimal gain between the robust and optimal case is 84%.

Going a little deeper in the comparison, we could wonder how effective/ineffective
the robust control could be when applied to the optimal initial perturbation computed
in Zuccher et al. (2004), or how (in)effective the optimal control could be when applied
to the robust initial perturbation. The possible combinations and the corresponding
values of the mean gain, ordered by increasing G, are reported in table 2, for E0 = 1,
Ew = 5 and β = 0.8.

The smallest energy gain is found for the optimal-initial-perturbation–optimal-
control case, as expected. In fact, the optimal control at the wall computed for a
given initial condition is the one that minimizes the objective function among all
the possible controls. If, for the same initial optimal perturbation, the robust control
(obviously referring to the same E0, Ew and β) is applied, case OR, a degradation
of the control efficiency follows and the gain increases by 23%. Figure 21 shows
how this happens. In case OR, the energy, close to the leading edge, grows much
faster than in case OO. As stressed before, the reason for this behaviour probably lies
in the fact that the robust-control suction always reaches its peak farther downstream
than the optimal-control case and therefore is less effective close to the leading edge.

The robust-initial-perturbation–robust-control case (RR) furnishes, by definition,
the most disrupting initial condition together with its best control at the wall. For this
reason, the gain is higher than in the preceding two cases. However, when the optimal
control at the wall is applied to the robust initial condition (case RO), gain becomes
even larger (by 27%). It goes without saying that in the presence of a random mixture
of all possible perturbations robust control guarantees the best value of worst-case
performance.
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6. Summary and conclusions
This paper has discussed the optimal and robust control of the steady three-

dimensional, algebraically growing instability in the incompressible boundary layer
developing nonlinearly over a flat plate, by a perturbation-independent mean-
flow modification. An adjoint-based optimization technique has been used, first to
determine the optimal control in the presence of a given initial condition, and then
to search for the worst possible initial condition in the presence of the corresponding
optimal control. The latter procedure consists in the identification of a saddle point
of the cost functional in parameter space, as outlined by Bewley et al. (2000). The
energy metric, whose derivatives we render equal to zero via successive iterations, is the
disturbance energy integrated over the whole volume of the fluid. The extremization of
a different objective (e.g. the final perturbation energy) produces undesired excursions
in the disturbance energy, which could lead to advance transition, as already noted
by previous authors.

Results are compared at constant wavenumber, at constant initial or control energy
and at the optimal wavenumber, defined as the value of β that maximizes the gain
for any given energy.

When an optimal control is sought, the initial condition is fixed at the optimal
perturbation computed in Zuccher et al. (2004), and the steady spanwise-uniform wall-
suction profile that optimally opposes it is determined. The choice of a uniform (in z)
control stems from practical considerations of realizability: it is the simplest phase-
independent (hence feedback-independent) approach. The most evident common
feature of all the tests performed is that the control velocity is always negative (i.e.
the optimal control consists of suction only) and concentrated in the proximity of the
leading edge.

The curves of the mean gain are shown for varying control energies, wavenumbers
and initial energies, in the linear and nonlinear regimes. When the control energy
is low, the differences from the uncontrolled cases are not significant, whereas high
values of Ew render the curve of the gain lower and flatter. This trend is independent
of the initial energy.
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Increasing the control energy produces better results (i.e. lower gains), as intuitively
expected and smoother suction-velocity profiles. The effect of the control on the
flow field is to make the mode-zero velocity profile similar to that of an accelerated
boundary layer: as more and more fluid is sucked away from the flow, the mean
profile becomes fuller and the boundary-layer thickness decreases.

The control on a short window or on two windows is always less efficient than the
case in which suction is applied from the leading to the trailing edge. Both the gain
and the maximum value of the suction velocity are higher when a reduced control
window is employed. Nevertheless, the loss in gain is acceptable and the general
features of the optimal suction profile are preserved.

After investigating the characteristics of optimal control, attention was turned to
robust control. In fact, when control is on, the previously computed optimal initial
perturbation no longer maximizes the mean gain. Robust control overcomes this
difficulty by optimizing the initial perturbation simultaneously with the corresponding
wall-suction distribution. The results in this setting exhibit a gain that always exceeds
that of the corresponding optimal case, as we would expect since the inlet perturbation
applied in robust control is by definition the worst possible one.

The results in the case of robust control differ from the corresponding optimal
ones as the control energy Ew becomes larger. For Ew reasonably small, in fact, they
look very similar because the weak control employed is not sufficient to strongly alter
the flow field. On the contrary, with increasing control effort, more differences arise,
especially in the wall-suction distribution. Comparisons reveal that the best control
resulting from a robust calculation is usually more uniform in x with a lower peak
value than the optimal computation. Moreover, in the robust case, the maximum
suction is always applied farther downstream than in the optimal case and the
resulting optimal gain G is higher by as much as 84%. For the larger control energies,
robust-control suction distributions are surprisingly clustered near one another; this is
an unexpected bonus for applications and possible wind-tunnel tests to be conducted
on the basis of the control laws computed here.
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Luchini, P. & Bottaro, A. 1998 Görtler vortices: a backward-in-time approach to the receptivity
problem. J. Fluid Mech. 363, 1–23.

Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to
free-stream turbulence. J. Fluid Mech. 430, 149–168.

Myose, R. Y. & Blackwelder, R. F. 1991 Control the spacing of streamwise vortices on concave
walls. AIAA J. 29, 1901–1905.

Myose, R. Y. & Blackwelder, R. F. 1995 Control of streamwise vortices using selective suction.
AIAA J. 33, 1073–1080.

Pralits, J. O., Hanifi, A. & Henningson, D. H. 2002 Adjoint-based optimization of steady suction
for disturbance control in incompressible flows. J. Fluid Mech. 467, 129–161.

Schlichting, H. 1979 Boundary–Layer Theory, 7th edn. McGraw-Hill.

Schmid, P. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.

Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability
without eigenvalues. Science 261, 578–584.

Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994
Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer
structure and receptivity. J. Fluid Mech. 281, 193–218.

Wu, X. & Choudhari, M. 2001 Effect of long-wavelength Klebanoff modes on boundary-layer
instability. CTR Annu. Res. Briefs, 305–316.

Zuccher, S., Bottaro, A. & Luchini, P. 2004 Algebraic growth in a Blasius boundary layer:
nonlinear optimal disturbances. Eur. J. Mech. B/Fluids (submitted).


